The paper considers a forward-backward system of parabolic PDEs arising in a Mean Field Game (MFG) model where every agent controls the drift of a trajectory subject to Brownian diffusion, trying to escape a given bounded domain $\Omega$ in minimal expected time. Agents are constrained by a bound on the drift depending on the density of other agents at their location. Existence for a finite time horizon $T$ is proven via a fixed point argument, but the natural setting for this problem is in infinite time horizon. Estimates are needed to treat the limit $T\to\infty$, and the asymptotic behavior of the solution obtained in this way is also studied. This passes through classical parabolic arguments and specific computations for MFGs. Both the ...