Clustering is one of the essential topics in data mining. Although it is designed to work in a fully unsupervisedway, its application in real-world data is often regulated by expert knowledge. Constrained clustering (ageneralization of semi-supervised clustering) aims to exploit this knowledge during the clustering task. In thisthesis, we develop two frameworks to integrate expert constraints in the clustering task. In the first work, wepropose a declarative post-processing method to adapt the output of a clustering algorithm to satisfy theconstraints. The originality is to consider an allocation matrix that gives the scores for attribution of points toeach cluster and to find the best partition satisfying all the constraints. In the second...
Notre capacité grandissante à collecter et stocker des données a fait de l'apprentissage non superv...
National audienceIn our data driven world, clustering is of major importance to help end-users and d...
One of the key tools to gain knowledge from data is clustering: identifying groups of instances that...
Clustering is one of the essential topics in data mining. Although it is designed to work in a fully...
Le clustering sous contraintes (une généralisation du clustering semi-supervisé) vise à exploiter le...
Cluster analysis is an important task in Data Mining with hundreds of different approaches in the li...
Nowadays, decision processes in various areas (marketing, biology, etc) require the processing of in...
Nowadays, decision processes in various areas (marketing, biology, etc) require the processing of in...
RÉSUMÉ: Le clustering est une technique importante de l'analyse des données non supervisée qui per- ...
National audienceActively involving an expert in a constrained clustering loop translates into an in...
National audienceActively involving an expert in a constrained clustering loop translates into an in...
National audienceActively involving an expert in a constrained clustering loop translates into an in...
Dans cette thèse, nous abordons les problèmes bien connus de clustering et de fouille de règles d’as...
International audienceConstrained clustering that integrates knowledge in the form of constraints in...
La classification non supervisée, souvent appelée par le terme anglais de clustering, est une tâche ...
Notre capacité grandissante à collecter et stocker des données a fait de l'apprentissage non superv...
National audienceIn our data driven world, clustering is of major importance to help end-users and d...
One of the key tools to gain knowledge from data is clustering: identifying groups of instances that...
Clustering is one of the essential topics in data mining. Although it is designed to work in a fully...
Le clustering sous contraintes (une généralisation du clustering semi-supervisé) vise à exploiter le...
Cluster analysis is an important task in Data Mining with hundreds of different approaches in the li...
Nowadays, decision processes in various areas (marketing, biology, etc) require the processing of in...
Nowadays, decision processes in various areas (marketing, biology, etc) require the processing of in...
RÉSUMÉ: Le clustering est une technique importante de l'analyse des données non supervisée qui per- ...
National audienceActively involving an expert in a constrained clustering loop translates into an in...
National audienceActively involving an expert in a constrained clustering loop translates into an in...
National audienceActively involving an expert in a constrained clustering loop translates into an in...
Dans cette thèse, nous abordons les problèmes bien connus de clustering et de fouille de règles d’as...
International audienceConstrained clustering that integrates knowledge in the form of constraints in...
La classification non supervisée, souvent appelée par le terme anglais de clustering, est une tâche ...
Notre capacité grandissante à collecter et stocker des données a fait de l'apprentissage non superv...
National audienceIn our data driven world, clustering is of major importance to help end-users and d...
One of the key tools to gain knowledge from data is clustering: identifying groups of instances that...