International audienceLarge scale inference problems of practical interest can often be addressed with help of Markov random fields. This requires to solve in principle two related problems: the first one is to find offline the parameters of the MRF from empirical data (inverse problem); the second one (direct problem) is to set up the inference algorithm to make it as precise, robust and efficient as possible. In this work we address both the direct and inverse problem with mean-field methods of statistical physics, going beyond the Bethe approximation and associated belief propagation algorithm. We elaborate on the idea that loop corrections to belief propagation could be dealt with in a systematic way on pairwise Markov random fields, by...
This work deals with the parameter estimation problem in hidden Markov fields . The principal goal ...
La restauration statistique non-supervisée de signaux admet d'innombrables applications dans les dom...
We show in this paper the deep relationship between classic models from Statistical Physics and Mar...
We investigate different ways of generating approximate solutions to the inverse problem of pairwise...
International audienceLarge scale inference problems of practical interest can often be addressed wi...
An important part of problems in statistical physics and computer science can be expressed as the co...
International audienceIn the context of inference with expectation constraints, we propose an approa...
Dans une première partie théorique, nous nous penchons sur une analyse rigoureuse des performances d...
Dans cette thèse, montrons à travers trois problématiques indépendantes l'intérêt des méthodes d'exp...
Les techniques M/EEG permettent de déterminer les changements de l'activité du cerveau, utiles au di...
National audienceL'un des problèmes centraux en statistique et apprentissage automatique est de savo...
Introduction This work focuses on the Markov chain Monte Carlo (MCMC) algorithms involved in the re...
Cette thèse se compose de deux parties indépendantes et la première regroupant deux problématiques d...
We investigate different ways of generating approximate solutions to the pairwise Markov random fiel...
The problem of obtaining the maximum a posteriori estimate of a general discrete Markov random field...
This work deals with the parameter estimation problem in hidden Markov fields . The principal goal ...
La restauration statistique non-supervisée de signaux admet d'innombrables applications dans les dom...
We show in this paper the deep relationship between classic models from Statistical Physics and Mar...
We investigate different ways of generating approximate solutions to the inverse problem of pairwise...
International audienceLarge scale inference problems of practical interest can often be addressed wi...
An important part of problems in statistical physics and computer science can be expressed as the co...
International audienceIn the context of inference with expectation constraints, we propose an approa...
Dans une première partie théorique, nous nous penchons sur une analyse rigoureuse des performances d...
Dans cette thèse, montrons à travers trois problématiques indépendantes l'intérêt des méthodes d'exp...
Les techniques M/EEG permettent de déterminer les changements de l'activité du cerveau, utiles au di...
National audienceL'un des problèmes centraux en statistique et apprentissage automatique est de savo...
Introduction This work focuses on the Markov chain Monte Carlo (MCMC) algorithms involved in the re...
Cette thèse se compose de deux parties indépendantes et la première regroupant deux problématiques d...
We investigate different ways of generating approximate solutions to the pairwise Markov random fiel...
The problem of obtaining the maximum a posteriori estimate of a general discrete Markov random field...
This work deals with the parameter estimation problem in hidden Markov fields . The principal goal ...
La restauration statistique non-supervisée de signaux admet d'innombrables applications dans les dom...
We show in this paper the deep relationship between classic models from Statistical Physics and Mar...