We introduce a new numerical method, based on Bernoulli polynomials, for solving multiterm variable-order fractional differential equations. The variable-order fractional derivative was considered in the Caputo sense, while the Riemann–Liouville integral operator was used to give approximations for the unknown function and its variable-order derivatives. An operational matrix of variable-order fractional integration was introduced for the Bernoulli functions. By assuming that the solution of the problem is sufficiently smooth, we approximated a given order of its derivative using Bernoulli polynomials. Then, we used the introduced operational matrix to find some approximations for the unknown function and its derivatives. Using these approx...
As a mathematical tool, variable-order (VO) fractional calculus (FC) was developed rapidly in the en...
We present a new numerical tool to solve partial differential equations involving Caputo derivative...
RESUMEN: Trabajo en investigacion sobre solucion de ecuaciones diferenciales de Riemann-Liouville y ...
We introduce a new numerical method, based on Bernoulli polynomials, for solving multiterm variable-...
We propose two efficient numerical approaches for solving variable-order fractional optimal control...
AbstractIn this paper, we use Bernstein polynomials to seek the numerical solution of a class of non...
n this paper, we examined a wide class of the variable order fractional problems such as linear and ...
In this paper, we use Bernstein polynomials to seek the numerical solution of a class of nonlinear v...
AbstractFractional calculus has been used to model physical and engineering processes that are found...
AbstractIn this paper, we use Bernstein polynomials to seek the numerical solution of a class of non...
In the current study, the Bernoulli polynomials are used to obtain the numerical solution of fractio...
In this paper we consider the variable order time fractional diffusion equation. We adopt the Coimbr...
In this paper we consider the variable order time fractional diffusion equation. We adopt the Coimbr...
In this paper we consider the variable order time fractional diffusion equation. We adopt the Coimbr...
To broaden the range of applicability of variable-order fractional differential models, reliable nume...
As a mathematical tool, variable-order (VO) fractional calculus (FC) was developed rapidly in the en...
We present a new numerical tool to solve partial differential equations involving Caputo derivative...
RESUMEN: Trabajo en investigacion sobre solucion de ecuaciones diferenciales de Riemann-Liouville y ...
We introduce a new numerical method, based on Bernoulli polynomials, for solving multiterm variable-...
We propose two efficient numerical approaches for solving variable-order fractional optimal control...
AbstractIn this paper, we use Bernstein polynomials to seek the numerical solution of a class of non...
n this paper, we examined a wide class of the variable order fractional problems such as linear and ...
In this paper, we use Bernstein polynomials to seek the numerical solution of a class of nonlinear v...
AbstractFractional calculus has been used to model physical and engineering processes that are found...
AbstractIn this paper, we use Bernstein polynomials to seek the numerical solution of a class of non...
In the current study, the Bernoulli polynomials are used to obtain the numerical solution of fractio...
In this paper we consider the variable order time fractional diffusion equation. We adopt the Coimbr...
In this paper we consider the variable order time fractional diffusion equation. We adopt the Coimbr...
In this paper we consider the variable order time fractional diffusion equation. We adopt the Coimbr...
To broaden the range of applicability of variable-order fractional differential models, reliable nume...
As a mathematical tool, variable-order (VO) fractional calculus (FC) was developed rapidly in the en...
We present a new numerical tool to solve partial differential equations involving Caputo derivative...
RESUMEN: Trabajo en investigacion sobre solucion de ecuaciones diferenciales de Riemann-Liouville y ...