We study linear inhomogeneous kinetic equations with an external confining potential and a collision operator admitting several local conservation laws (local density, momentum and energy). We classify all special macroscopic modes (stationary solutions and time-periodic solutions). We also prove the convergence of all solutions of the evolution equation to such non-trivial modes, with a quantitative exponential rate. This is the first hypocoercivity result with multiple special macroscopic modes with constructive estimates depending on the geometry of the potential.Comment: 65 pages, 1 figur
We consider a semiclassical linear Boltzmann model with a non local collision operator. We provide s...
This paper is about the rate of convergence to equilibrium for hypocoercive linear kinetic equations...
International audienceWe propose an approach to directly obtaining estimates on the resolvent of hyp...
65 pages, 1 figureWe study linear inhomogeneous kinetic equations with an external confining potenti...
We develop a new method for proving hypocoercivity for a large class of linear kinetic equations wit...
Hypocoercivity methods are applied to linear kinetic equations without any space confinement, when l...
In this paper we develop a general approach of studying the hypocoercivity for a class of linear kin...
This note is devoted to a simple method for proving hypocoercivity of the solutions of a kinetic equ...
We establish the convergence to the equilibrium for various linear collisional kinetic equations (in...
International audienceIn this lectures given at the Morning side center of Mathematics in October 20...
We consider a nonlinear system of ODEs, where the underlying linear dynamics are determined by a Her...
One of the main problems in statistical mechanics is the mathematical derivation, through space-tim...
We derive quantitatively the Harnack inequalities for kinetic integro-differential equations. This i...
The local densities and current densities of conserved quantities are expressed in a tutorial scope,...
We consider fermions defined on a continuous one-dimensional interval and subject to weak repulsive ...
We consider a semiclassical linear Boltzmann model with a non local collision operator. We provide s...
This paper is about the rate of convergence to equilibrium for hypocoercive linear kinetic equations...
International audienceWe propose an approach to directly obtaining estimates on the resolvent of hyp...
65 pages, 1 figureWe study linear inhomogeneous kinetic equations with an external confining potenti...
We develop a new method for proving hypocoercivity for a large class of linear kinetic equations wit...
Hypocoercivity methods are applied to linear kinetic equations without any space confinement, when l...
In this paper we develop a general approach of studying the hypocoercivity for a class of linear kin...
This note is devoted to a simple method for proving hypocoercivity of the solutions of a kinetic equ...
We establish the convergence to the equilibrium for various linear collisional kinetic equations (in...
International audienceIn this lectures given at the Morning side center of Mathematics in October 20...
We consider a nonlinear system of ODEs, where the underlying linear dynamics are determined by a Her...
One of the main problems in statistical mechanics is the mathematical derivation, through space-tim...
We derive quantitatively the Harnack inequalities for kinetic integro-differential equations. This i...
The local densities and current densities of conserved quantities are expressed in a tutorial scope,...
We consider fermions defined on a continuous one-dimensional interval and subject to weak repulsive ...
We consider a semiclassical linear Boltzmann model with a non local collision operator. We provide s...
This paper is about the rate of convergence to equilibrium for hypocoercive linear kinetic equations...
International audienceWe propose an approach to directly obtaining estimates on the resolvent of hyp...