For any Internet service provider or network operator, it is crucial to quickly and efficiently diagnose the problems that occur on the network. The benefits of a good fault diagnosis system are mainly to minimize the costs of network and service operations and to enhance the customer's quality of experience. One major challenge for any diagnosis system concerns the discovery of new faults, that are unknown to the current version of the diagnosis system. The exploratory process for finding new faults can prove to be expensive and time consuming for internet service providers. In this thesis, we explore an alternative approach based on learning methods, in order to build learning-based diagnosis systems. Our study explores Probabilistic Grap...