In this paper, the available formulae for the curvature of plane curve are reviewed not only for the time-like but also for the space-like parameter curve. Two ways to describe the curve are proposed. One is the straight way to obtain the Frenet formula according to the given curve of parameter form. The other is that we can construct the curve by solving the state equation of Frenet formula subject to the initial position, the initial tangent, normal and binormal vectors, and the given radius of curvature and torsion constant. The remainder theorem of the matrix and the Cayley–Hamilton theorem are both employed to solve the Frenet equation. We review the available formulae of the radius of curvature and examine their equivalence. Through t...