Checkerboard colouring arguments for proving that a given collection of polyominoes cannot tile a finite target region of the plane are well-known and typically applied on a case-by-case basis. In this article, we give a systematic mathematical treatment of such colouring arguments, based on the concept of a parity violation, which arises from the mismatch between the colouring of the tiles and the colouring of the target region. Identifying parity violations is a combinatorial problem related to the subset sum problem. We convert the combinatorial problem into linear Diophantine equations and give necessary and sufficient conditions for a parity violation. The linear Diophantine equation approach leads to an algorithm implemented in MATLAB...