The basis exchange axiom has been a driving force in the development of matroid theory. However, the axiom gives only a local characterization of the relation of bases, which is a major stumbling block to further progress, and providing a global understanding of the structure of matroid bases is a fundamental goal in matroid optimization. While studying the structure of symmetric exchanges, Gabow proposed the problem that any pair of bases admits a sequence of symmetric exchanges. A different extension of the exchange axiom was proposed by White, who investigated the equivalence of compatible basis sequences. These conjectures suggest that the family of bases of a matroid possesses much stronger structural properties than we are aware of....