The study of complexity and optimization in decision theory involves both partial and complete characterizations of preferences over decision spaces in terms of real-valued monotones. With this motivation, and following the recent introduction of new classes of monotones, like injective monotones or strict monotone multi-utilities, we present the classification of preordered spaces in terms of both the existence and cardinality of real-valued monotones and the cardinality of the quotient space. In particular, we take advantage of a characterization of real-valued monotones in terms of separating families of increasing sets in order to obtain a more complete classification consisting of classes that are strictly different from each other. As...