Quantum graphs are defined by having a Laplacian defined on the edges a metric graph with boundary conditions on each vertex such that the resulting operator, $L$, is self-adjoint. We use Neumann boundary conditions. The spectrum of $L$ does not determine the graph uniquely, that is, there exist non-isomorphic graphs with the same spectra. There are few known examples of pairs of non-isomorphic but isospectral quantum graphs. Using computer algebra we have found all pairs of isospectral but non-isomorphic equilateral connected quantum graphs with at most nine vertices. This includes thirteen isospectral triplets and one isospectral set of four. One of the isospectral triplets involves a loop where we could prove isospectrality. We also pres...
We compute all the quantum symmetries of a graph with n- disjoint loops at the critical inverse temp...
We introduce the (G,H)-isomorphism game, a new two-player non-local game that classical players can ...
This thesis consists of four papers and deals with the spectral theory of quantum graphs. A quantum ...
We present and discuss isospectral quantum graphs which are not isometric. These graphs are the anal...
In 2019, Aterias et al. constructed pairs of quantum isomorphic, non-isomorphic graphs from linear c...
Consider two quantum graphs with the standard Laplace operator and non-Robin type boundary condition...
The quantum graph has been demonstrated to be widely applicable in the field of mathematical physics...
We introduce a nonlocal game that captures and extends the notion of graph isomorphism. This game ca...
We provide an introductory review of some topics in spectral theory of Laplacians on metric graphs. ...
Three graph invariants are introduced which may be measured from a quantum graph state and form exam...
We investigate the bottom of the spectra of infinite quantum graphs, i.e., Laplace operators on metr...
We introduce a nonlocal game that captures and extends the notion of graph isomorphism. This game ca...
We summarize different approaches to the theory of quantum graphs and provide several ways to constr...
Motivated by string diagrammatic approach to undirected tracial quantum graphs by Musto, Reutter, Ve...
Abstract. According to a recent conjecture, isospectral objects have different nodal count sequences...
We compute all the quantum symmetries of a graph with n- disjoint loops at the critical inverse temp...
We introduce the (G,H)-isomorphism game, a new two-player non-local game that classical players can ...
This thesis consists of four papers and deals with the spectral theory of quantum graphs. A quantum ...
We present and discuss isospectral quantum graphs which are not isometric. These graphs are the anal...
In 2019, Aterias et al. constructed pairs of quantum isomorphic, non-isomorphic graphs from linear c...
Consider two quantum graphs with the standard Laplace operator and non-Robin type boundary condition...
The quantum graph has been demonstrated to be widely applicable in the field of mathematical physics...
We introduce a nonlocal game that captures and extends the notion of graph isomorphism. This game ca...
We provide an introductory review of some topics in spectral theory of Laplacians on metric graphs. ...
Three graph invariants are introduced which may be measured from a quantum graph state and form exam...
We investigate the bottom of the spectra of infinite quantum graphs, i.e., Laplace operators on metr...
We introduce a nonlocal game that captures and extends the notion of graph isomorphism. This game ca...
We summarize different approaches to the theory of quantum graphs and provide several ways to constr...
Motivated by string diagrammatic approach to undirected tracial quantum graphs by Musto, Reutter, Ve...
Abstract. According to a recent conjecture, isospectral objects have different nodal count sequences...
We compute all the quantum symmetries of a graph with n- disjoint loops at the critical inverse temp...
We introduce the (G,H)-isomorphism game, a new two-player non-local game that classical players can ...
This thesis consists of four papers and deals with the spectral theory of quantum graphs. A quantum ...