Coronagraphic imaging of exoplanets using ground-based instruments on large telescopes is intrinsically limited by speckles induced by uncorrected aberrations. These aberrations originate from the imperfect correction of the atmosphere by an extreme adaptive optics system; from static optical defects; or from small opto-mechanical variations due to changes in temperature, pressure, or gravity vector. More than the speckles themselves, the performance of high-contrast imagers is ultimately limited by their temporal stability, since most post-processing techniques rely on difference of images acquired at different points in time. Identifying the origin of the aberrations and the timescales involved is therefore crucial to understanding the fu...