The scaling of acceleration statistics in turbulence is examined by combining data from the literature with new data from well-resolved direct numerical simulations of isotropic turbulence, significantly extending the Reynolds number range. The acceleration variance at higher Reynolds numbers departs from previous predictions based on multifractal models, which characterize Lagrangian intermittency as a naive extension of Eulerian intermittency. The disagreement is even more prominent for higher-order moments of the acceleration. Instead, starting from a known exact relation, we relate the scaling of acceleration variance to that of Eulerian fourth-order velocity gradient and velocity increment statistics. This prediction is in excellent ag...