Although highly successful, the Truncated Wigner Approximation (TWA) does not account for genuine many-body quantum interference between different solutions of the mean-field equations of a bosonic many-body (MB) system. This renders the TWA essentially classical, where a large number of particles formally takes the role of the inverse of Planck's constant $\hbar$. The failure to describe genuine interference phenomena, such as localization and scarring in Fock space, can be seen as a virtue of this quasiclassical method, which thereby allows one to identify genuine quantum effects when being compared with "exact" quantum calculations that do not involve any a priori approximation. A rather prominent cause for such quantum effects that are ...