The latest video coding standard, Versatile Video Coding (VVC), achieves almost twice coding efficiency compared to its predecessor, the High Efficiency Video Coding (HEVC). However, achieving this efficiency (for intra coding) requires 31x computational complexity compared to HEVC, making it challenging for low power and real-time applications. This paper, proposes a novel machine learning approach that jointly and separately employs two modalities of features, to simplify the intra coding decision. First a set of features are extracted that use the existing DCT core of VVC, to assess the texture characteristics, and forms the first modality of data. This produces high quality features with almost no overhead. The distribution of intra mod...