El reconocimiento de entidades con nombre (NER) es una tarea importante en el campo del Procesamiento del Lenguaje Natural que se utiliza para extraer conocimiento significativo de los documentos textuales. El objetivo de NER es identificar trozos de texto que se refieran a entidades específicas. En esta tesis pretendemos abordar la tarea de NER en el dominio biomédico y en español. En este dominio las entidades pueden referirse a nombres de fármacos, síntomas y enfermedades y ofrecen un conocimiento valioso a los expertos sanitarios. Para ello, proponemos un modelo basado en redes neuronales y empleamos una combinación de word embeddings. Además, nosotros generamos unos nuevos embeddings específicos del dominio y del idioma para co...
Medical Named Entity Recognition (MedNER) is an indispensable task in biomedical text mining. NER ai...
Las tareas de recuperación de información se han convertido en una herramienta esencial para la inve...
The growth rate in the amount of biomedical documents is staggering. Unlocking information trapped i...
Named Entity Recognition (NER) is the rst step for knowledge acquisition when we deal with an unknow...
This document presents both the working notes, neural-based model and conclusions regarding the deve...
Background Text mining and natural language processing of clinical text, such as notes from electron...
Word embeddings are representations of words in a dense vector space. Although they are not recent p...
Named Entity Recognition in the clinical domain and in languages different from English has the diff...
This is a summary of the Ph.D. thesis written by Pilar López Úbeda at Universidad de Jaén under the ...
Background The volume of biomedical literature and clinical data is growing at an exponential rate....
In the Big Data era, there is an increasing need to fully exploit and analyze the huge quantity of i...
Automatically detecting mentions of pharmaceutical drugs and chemical substances is key for the subs...
abstract: Automating aspects of biocuration through biomedical information extraction could signific...
As vast amounts of unstructured data are becoming available digitally, computer-based methods to ext...
This work presents the first large-scale biomedical Spanish language models trained from scratch, us...
Medical Named Entity Recognition (MedNER) is an indispensable task in biomedical text mining. NER ai...
Las tareas de recuperación de información se han convertido en una herramienta esencial para la inve...
The growth rate in the amount of biomedical documents is staggering. Unlocking information trapped i...
Named Entity Recognition (NER) is the rst step for knowledge acquisition when we deal with an unknow...
This document presents both the working notes, neural-based model and conclusions regarding the deve...
Background Text mining and natural language processing of clinical text, such as notes from electron...
Word embeddings are representations of words in a dense vector space. Although they are not recent p...
Named Entity Recognition in the clinical domain and in languages different from English has the diff...
This is a summary of the Ph.D. thesis written by Pilar López Úbeda at Universidad de Jaén under the ...
Background The volume of biomedical literature and clinical data is growing at an exponential rate....
In the Big Data era, there is an increasing need to fully exploit and analyze the huge quantity of i...
Automatically detecting mentions of pharmaceutical drugs and chemical substances is key for the subs...
abstract: Automating aspects of biocuration through biomedical information extraction could signific...
As vast amounts of unstructured data are becoming available digitally, computer-based methods to ext...
This work presents the first large-scale biomedical Spanish language models trained from scratch, us...
Medical Named Entity Recognition (MedNER) is an indispensable task in biomedical text mining. NER ai...
Las tareas de recuperación de información se han convertido en una herramienta esencial para la inve...
The growth rate in the amount of biomedical documents is staggering. Unlocking information trapped i...