Subgraph detection has recently been one of the most studied problems in the CONGEST model of distributed computing. In this work, we study the distributed complexity of problems closely related to subgraph detection, mainly focusing on induced subgraph detection. The main line of this work presents lower bounds and parameterized algorithms w.r.t structural parameters of the input graph: - On general graphs, we give unconditional lower bounds for induced detection of cycles and patterns of treewidth 2 in CONGEST. Moreover, by adapting reductions from centralized parameterized complexity, we prove lower bounds in CONGEST for detecting patterns with a 4-clique, and for induced path detection conditional on the hardness of triangle detection...