We develop approximation algorithms for set-selection problems with deterministic constraints, but random objective values, i.e., stochastic probing problems. When the goal is to maximize the objective, approximation algorithms for probing problems are well-studied. On the other hand, few techniques are known for minimizing the objective, especially in the adaptive setting, where information about the random objective is revealed during the set-selection process and allowed to influence it. For minimization problems in particular, incorporating adaptivity can have a considerable effect on performance. In this work, we seek approximation algorithms that compare well to the optimal adaptive policy. We develop new techniques for adaptive minim...