Query-to-communication lifting theorems translate lower bounds on query complexity to lower bounds for the corresponding communication model. In this paper, we give a simplified proof of deterministic lifting (in both the tree-like and dag-like settings). Our proof uses elementary counting together with a novel connection to the sunflower lemma. In addition to a simplified proof, our approach opens up a new avenue of attack towards proving lifting theorems with improved gadget size - one of the main challenges in the area. Focusing on one of the most widely used gadgets - the index gadget - existing lifting techniques are known to require at least a quadratic gadget size. Our new approach combined with robust sunflower lemmas allows us to ...