Hand movement classification via surface electromyographic (sEMG) signal is a well-established approach for advanced Human-Computer Interaction. However, sEMG movement recognition has to deal with the long-Term reliability of sEMG-based control, limited by the variability affecting the sEMG signal. Embedded solutions are affected by a recognition accuracy drop over time that makes them unsuitable for reliable gesture controller design. In this paper, we present a complete wearable-class embedded system for robust sEMG-based gesture recognition, based on Temporal Convolutional Networks (TCNs). Firstly, we developed a novel TCN topology (TEMPONet), and we tested our solution on a benchmark dataset (Ninapro), achieving 49.6% average accuracy, ...