Intense X-ray and ultraviolet stellar irradiation can heat and inflate the atmospheres of closely orbiting exoplanets, driving mass outflows that may be significant enough to evaporate a sizable fraction of the planet atmosphere over the system lifetime. The recent surge in the number of known exoplanets, together with the imminent deployment of new ground and space-based facilities for exoplanet discovery and characterization, requires a prompt and efficient assessment of the most promising targets for intensive spectroscopic follow-ups. For this purpose, we developed ATmospheric EScape (ATES), a new hydrodynamics code that is specifically designed to compute the temperature, density, velocity, and ionization fraction profiles of highly ir...