Graph-based applications are essential in emerging domains such as data analytics or machine learning. Data gathering in a knowledge-based society requires great data processing efficiency. High-throughput GPGPU architectures are key to enable efficient graph processing. Nonetheless, irregular and sparse memory access patterns present in graph-based applications induce high memory divergence and contention, which result in poor GPGPU efficiency for graph processing. Recent work has pointed out the importance of stream compaction operations, and has proposed a Stream Compaction Unit (SCU) to offload them to a specialized hardware. On the other hand, memory contention caused by high divergence has been tackled with the Irregular accesses Reor...