A level graph G = (V,E,lev) is a directed acyclic graph with a mapping lev : V -> {1,2,...,k}, k >= 1, that partitions the vertex set V as V = V1 u V u...u Vk, V = lev -1 (j), Vi n Vj = Ø for i != j, such that lev(v) >= lev(u) + 1 for each edge (u,v) in E. The level planarity testing problem is to decide if G can be drawn in the plane such that for each level Vi, all v in Vi are drawn on the line l_i = {(x,k-i) | x in R}, the edges are drawn monotone with respect to the vertical direction, and no edges intersect except at their end vertices. If G has a single source, the test can be performed in order(|V|) time by an algorithm of DiBattista and Nardelli (1988) that uses the PQ-tree data structure introduced by Booth and Lueker (1976). PQ-tr...