The application of deep learning to medical imaging tasks has led to exceptional results in several contexts, including the analysis of human tissue samples. Convolutional neural networks (CNNs) constitute a highly performant model, that can almost perfectly detect even the smallest tumor cells in tissue biopsies. These models may have a great potential to support physicians if introduced in the clinical routines. Despite their impeccable performance on the test sets, CNNs fail in the real-world settings of the clinical workflow, lacking generalization capabilities to unseen data coming from diverse domains. New approaches shall be researched to evaluate whether a model has learned to detect correct patterns and can provide a reliable outco...
In den letzten Jahrzehnten sind medizinische Bildgebungsverfahren wie die Computertomographie (CT) z...
For the diagnosis of medical images, computer-aided methods can help to lower time requirements and ...
RÉSUMÉ: Avec l'essor de l'apprentissage profond, une quantité croissante de modèles sont développés ...
The application of deep learning to medical imaging tasks has led to exceptional results in several ...
Following the successful use of deep learning (DL) in the field of computer vision and natural langu...
Objectives: to define a clinically usable preprocessing pipeline for MRI data, to verify by interpre...
Breast Cancer (BC) is the second type of cancer with a higher incidence in women, it is responsible ...
In the past decade, deep neural networks have revolutionized computer vision. High performing deep n...
Les réseaux neuronaux convolutifs profonds ("deep convolutional neural networks" ou DCNN) ont récemm...
Le cancer est une maladie mortelle considérée comme la deuxième cause de décès. Toute avancée dans l...
Deep neural networks (DNN) are very powerful tools but remain black boxes. Convolutional neural net...
Neuroimaging offers an unmatched description of the brain’s structure and physiology, but the inform...
Blood-oxygen-level dependent (BOLD) functional magnetic resonance imaging (fMRI) makes it possible t...
Automation of data-driven models for medical diagnosis can support the clinical decision process and...
Deep learning has been a significant advance in artificial intelligence in recent years. Its main do...
In den letzten Jahrzehnten sind medizinische Bildgebungsverfahren wie die Computertomographie (CT) z...
For the diagnosis of medical images, computer-aided methods can help to lower time requirements and ...
RÉSUMÉ: Avec l'essor de l'apprentissage profond, une quantité croissante de modèles sont développés ...
The application of deep learning to medical imaging tasks has led to exceptional results in several ...
Following the successful use of deep learning (DL) in the field of computer vision and natural langu...
Objectives: to define a clinically usable preprocessing pipeline for MRI data, to verify by interpre...
Breast Cancer (BC) is the second type of cancer with a higher incidence in women, it is responsible ...
In the past decade, deep neural networks have revolutionized computer vision. High performing deep n...
Les réseaux neuronaux convolutifs profonds ("deep convolutional neural networks" ou DCNN) ont récemm...
Le cancer est une maladie mortelle considérée comme la deuxième cause de décès. Toute avancée dans l...
Deep neural networks (DNN) are very powerful tools but remain black boxes. Convolutional neural net...
Neuroimaging offers an unmatched description of the brain’s structure and physiology, but the inform...
Blood-oxygen-level dependent (BOLD) functional magnetic resonance imaging (fMRI) makes it possible t...
Automation of data-driven models for medical diagnosis can support the clinical decision process and...
Deep learning has been a significant advance in artificial intelligence in recent years. Its main do...
In den letzten Jahrzehnten sind medizinische Bildgebungsverfahren wie die Computertomographie (CT) z...
For the diagnosis of medical images, computer-aided methods can help to lower time requirements and ...
RÉSUMÉ: Avec l'essor de l'apprentissage profond, une quantité croissante de modèles sont développés ...