The Fáry-Milnor Theorem states that the total curvature of a knot gamma, which is a simple closed curve, is bounded from below by 2 pi times the bridge number br of the knot class of gamma. For knot classes K with br(K)=2, this bound also holds for curves in the C^1-closure of K, as proven by Gerlach et al. using the existence of alternating quadrisecants, a result of Denne. A general version of the Fáry-Milnor Theorem could turn out to be useful to characterise elastic knots for more general knot classes than treated by Gerlach et al.. In this thesis, we prove an extended Fáry-Milnor Theorem: For a curve gamma in the C^1-boundary of a knot class K with only finitely many, isolated self intersections we bound the total curvature from below ...