In Fialowski's classification for algebras of maximal class, there are three Lie algebras of maximal class with 1-dimensional homogeneous components: $\mathfrak{m}_0$, $L_1$ and $\mathfrak{m}_2$. In this paper, we studied their biderivations by considering the embedded mapping to derivation algebras. Then we determined commuting mappings on these algebras as an application of biderivations. Finally, local and 2-local derivations for these three algebras were characterized as the given gradings.Comment: 15 pages. Comments welcom
AbstractWe show that the algebra Der(L) of derivations of a strongly nondegenerate Lie algebra L gra...
We describe the isomorphism classes of infinite-dimensional N-graded Lie algebras of maximal class o...
The Hochschild cohomology of a DG algebra A with coefficients in itself is, up to a suspension of de...
AbstractWe describe the isomorphism classes of infinite-dimensional N-graded Lie algebras of maximal...
AbstractWe describe the isomorphism classes of infinite-dimensional N-graded Lie algebras of maximal...
The algebras of the title are infinite-dimensional graded Lie algebras $L= \bigoplus_{i=1}^{\infty}L...
The maximum extensions of finite-dimensional nilpotent Lie algebras are considered. In particular, i...
AbstractIt was shown by A. Fialowski that an arbitrary infinite-dimensional N-graded “filiform type”...
AbstractWe show that the algebra Der(L) of derivations of a strongly nondegenerate Lie algebra L gra...
Let n>1 be an integer. The algebras of the title, which we abbreviate as algebras of type n, are inf...
We describe the structure and different features of Lie algebras in the Verlinde category, obtained ...
We describe the isomorphism classes of infinite-dimensional N-graded Lie algebras of maximal class g...
We describe the isomorphism classes of infinite-dimensional N -graded Lie algebras of maximal class ...
summary:It is already known that any filiform Lie algebra which possesses a codimension 2 solvable e...
A thin Lie algebra is a Lie algebra L, graded over the positive integers, with its first homogeneous...
AbstractWe show that the algebra Der(L) of derivations of a strongly nondegenerate Lie algebra L gra...
We describe the isomorphism classes of infinite-dimensional N-graded Lie algebras of maximal class o...
The Hochschild cohomology of a DG algebra A with coefficients in itself is, up to a suspension of de...
AbstractWe describe the isomorphism classes of infinite-dimensional N-graded Lie algebras of maximal...
AbstractWe describe the isomorphism classes of infinite-dimensional N-graded Lie algebras of maximal...
The algebras of the title are infinite-dimensional graded Lie algebras $L= \bigoplus_{i=1}^{\infty}L...
The maximum extensions of finite-dimensional nilpotent Lie algebras are considered. In particular, i...
AbstractIt was shown by A. Fialowski that an arbitrary infinite-dimensional N-graded “filiform type”...
AbstractWe show that the algebra Der(L) of derivations of a strongly nondegenerate Lie algebra L gra...
Let n>1 be an integer. The algebras of the title, which we abbreviate as algebras of type n, are inf...
We describe the structure and different features of Lie algebras in the Verlinde category, obtained ...
We describe the isomorphism classes of infinite-dimensional N-graded Lie algebras of maximal class g...
We describe the isomorphism classes of infinite-dimensional N -graded Lie algebras of maximal class ...
summary:It is already known that any filiform Lie algebra which possesses a codimension 2 solvable e...
A thin Lie algebra is a Lie algebra L, graded over the positive integers, with its first homogeneous...
AbstractWe show that the algebra Der(L) of derivations of a strongly nondegenerate Lie algebra L gra...
We describe the isomorphism classes of infinite-dimensional N-graded Lie algebras of maximal class o...
The Hochschild cohomology of a DG algebra A with coefficients in itself is, up to a suspension of de...