Let n be even, let π = (d1, ... , dn) be a graphic degree sequence, and let π - k = (d1-k, ... , dn-k) also be graphic. Kundu proved that π has a realization G containing a k-factor, or k-regular graph. Another way to state the conclusion of Kundu's theorem is that π potentially contains a k-factor. Busch, Ferrara, Hartke, Jacobsen, Kaul, and West conjectured that more was true: π potentially contains k edge-disjoint 1-factors. Along these lines, they proved π would potentially contain edge-disjoint copies of a (k-2)-factor and two 1-factors. We follow the methods of Busch et al. but introduce a new tool which we call a multi-switch. Using this new idea, we prove that π potentially has edge-disjoint copies of a (k-4)-factor and four 1-...