Fixed-width Booth multipliers (FWBMs) generate a product with the same bit width as the operand and have been extensively employed in many digital systems. Various truncation error compensation (TEC) schemes have been presented for FWBM designs, aiming to reduce hardware costs while preserving operation accuracy. In general, the existing TEC methods function adequately for an exact bit width of the operand but fail to consider the TEC effect for FWBM inputs with various bit-width levels. To address this issue, we propose a bit-width adaptive TEC (BWATEC) scheme for providing high-accuracy TEC functions that are adaptive to the multiple L′-bit numerical ranges of input data for an L-bit FWBM (L′ ≤ L). We also present adjustable architecture ...