In the field of model order reduction for frequency response problems, the minimal rational interpolation (MRI) method has been shown to be quite effective. However, in some cases, numerical instabilities may arise when applying MRI to build a surrogate model over a large frequency range, spanning several orders of magnitude. We propose a strategy to overcome these instabilities, replacing an unstable global MRI surrogate with a union of stable local rational models. The partitioning of the frequency range into local frequency sub-ranges is performed automatically and adaptively, and is complemented by a (greedy) adaptive selection of the sampled frequencies over each sub-range. We verify the effectiveness of our proposed method with two nu...
Finite elements methods have long made use of model order reduction (MOR), particularly in the conte...
Frequency domain methods are known to suffer from a poor numerical conditioning when the frequency s...
This work is concerned with the kernel-based approximation of a complex-valued function from data, w...
In the field of model order reduction for frequency response problems, the minimal rational interpol...
We present a technique for Model Order Reduction (MOR) of frequency-domain problems relying on ratio...
We present a technique for Model Order Reduction (MOR) of frequency-domain problems relying on ratio...
We propose a model order reduction approach for non-intrusive surrogate modeling of parametric dynam...
We propose a model order reduction approach for non-intrusive surrogate modeling of parametric dynam...
We introduce several spatially adaptive model order reduction approaches tailored to non-coercive el...
We introduce several spatially adaptive model order reduction approaches tailored to non-coercive el...
A rational interpolation method for approximating a frequency response is presented. The method is b...
The Arnoldi and Lanczos algorithms, which belong to the class of Krylov sub-space methods, are incre...
The calculation of broadband macromodels from large tabulated frequency responses can be computation...
We present a technique for the approximation of a class of Hilbert space--valued maps which arise wi...
Code used to obtain numerical results for double-greedy parametric Model Reduction based on Minimal ...
Finite elements methods have long made use of model order reduction (MOR), particularly in the conte...
Frequency domain methods are known to suffer from a poor numerical conditioning when the frequency s...
This work is concerned with the kernel-based approximation of a complex-valued function from data, w...
In the field of model order reduction for frequency response problems, the minimal rational interpol...
We present a technique for Model Order Reduction (MOR) of frequency-domain problems relying on ratio...
We present a technique for Model Order Reduction (MOR) of frequency-domain problems relying on ratio...
We propose a model order reduction approach for non-intrusive surrogate modeling of parametric dynam...
We propose a model order reduction approach for non-intrusive surrogate modeling of parametric dynam...
We introduce several spatially adaptive model order reduction approaches tailored to non-coercive el...
We introduce several spatially adaptive model order reduction approaches tailored to non-coercive el...
A rational interpolation method for approximating a frequency response is presented. The method is b...
The Arnoldi and Lanczos algorithms, which belong to the class of Krylov sub-space methods, are incre...
The calculation of broadband macromodels from large tabulated frequency responses can be computation...
We present a technique for the approximation of a class of Hilbert space--valued maps which arise wi...
Code used to obtain numerical results for double-greedy parametric Model Reduction based on Minimal ...
Finite elements methods have long made use of model order reduction (MOR), particularly in the conte...
Frequency domain methods are known to suffer from a poor numerical conditioning when the frequency s...
This work is concerned with the kernel-based approximation of a complex-valued function from data, w...