Social networks created based on data gathered in various computer systems are structures that constantly evolve. The nodes and their connections change because they are influenced by the external to the network events.. In this work we present a new approach to the description and quantification of patterns of complex dynamic social networks illustrated with the data from the Wroclaw University of Technology email dataset. We propose an approach based on discovery of local network connection patterns (in this case triads of nodes) as well as we measure and analyse their transitions during network evolution. We define the Triad Transition Matrix (TTM) containing the probabilities of transitions between triads, after that we show how it can ...