Vegetation is an important component in the Earth system, providing a direct link between the biosphere and atmosphere. As such, a representative vegetation pattern is needed to accurately simulate climate. We attempt to model global vegetation (biomes) with a data-driven approach, to test if this allows us to create robust global and regional vegetation patterns. This not only provides quantitative reconstructions of past vegetation cover as a climate forcing, but also improves our understanding of past land cover-climate interactions which have important implications for the future. By using a Random Forest (RF) machine learning tool, we train the vegetation reconstruction with available biomized pollen data of present and past conditions...