Nous nous intéressons dans ce manuscrit aux méthodes hiérarchiques pour l'accélération des résolutions de systèmes linéaires issus de la méthode des éléments finis de frontière pour des problèmes hautement oscillants (tels qu'apparaissant en électromagnétisme). Une attention particulière est portée aux méthodes multipolaires rapides (MMR). Nous détaillons une nouvelle approche abstraite des méthodes hiérarchiques, en particulier des différentes formulations MMR, en présentant dans quelle mesure les symétries des structures arborescentes de ces méthodes peuvent être exploitées au sein des différentes MMR. Afin d'étendre le cadre de la formulation MMR explicite pour le noyau de Helmholtz en haute fréquence à ces symétries, nous introduisons l...
This thesis describes the Fast Multipole Method (FMM). The method reduces the complexity of the Coul...
The boundary elements method (BEM) leads to dense linear systemswhose size growsrapidly in pratice ;...
Jury: L.Greengard (Courant Institut, NYU), P.Joly (Inria, Rocquencourt), B.Desprès (UPMC), P.Frey (U...
We are interested in this manuscript in hierarchical methods for accelerating the resolution of line...
International audienceFast Multipole Methods (FMMs) based on the oscillatory Helmholtz kernel can re...
Les techniques avancées pour l’approximation de rang faible des matrices sont des outils de réductio...
Abstract. This paper introduces a parallel directional fast multipole method (FMM) for solving N-bod...
Abstract. This paper introduces a parallel directional fast multipole method (FMM) for solving N-bod...
A fast multipole method (FMM) for asymptotically smooth kernel functions (1/r, 1/r4, Gauss and Stoke...
We study integral methods applied to the resolution of the Maxwell equations where the linear system...
Abstract. A version of the fast multipole method (FMM) is described for charge distributions on the ...
The Fast Multipole Method allows the rapid evaluation of sums of radial basis functions centered at ...
The Fast Multipole Method (FMM) is well known to possess a bottleneck arising from decreasing worklo...
International audienceThis work presents a new Fast Multipole Method (FMM) based on plane wave expan...
For more than two decades, several forms of fast multipole methods have been extremely successful in...
This thesis describes the Fast Multipole Method (FMM). The method reduces the complexity of the Coul...
The boundary elements method (BEM) leads to dense linear systemswhose size growsrapidly in pratice ;...
Jury: L.Greengard (Courant Institut, NYU), P.Joly (Inria, Rocquencourt), B.Desprès (UPMC), P.Frey (U...
We are interested in this manuscript in hierarchical methods for accelerating the resolution of line...
International audienceFast Multipole Methods (FMMs) based on the oscillatory Helmholtz kernel can re...
Les techniques avancées pour l’approximation de rang faible des matrices sont des outils de réductio...
Abstract. This paper introduces a parallel directional fast multipole method (FMM) for solving N-bod...
Abstract. This paper introduces a parallel directional fast multipole method (FMM) for solving N-bod...
A fast multipole method (FMM) for asymptotically smooth kernel functions (1/r, 1/r4, Gauss and Stoke...
We study integral methods applied to the resolution of the Maxwell equations where the linear system...
Abstract. A version of the fast multipole method (FMM) is described for charge distributions on the ...
The Fast Multipole Method allows the rapid evaluation of sums of radial basis functions centered at ...
The Fast Multipole Method (FMM) is well known to possess a bottleneck arising from decreasing worklo...
International audienceThis work presents a new Fast Multipole Method (FMM) based on plane wave expan...
For more than two decades, several forms of fast multipole methods have been extremely successful in...
This thesis describes the Fast Multipole Method (FMM). The method reduces the complexity of the Coul...
The boundary elements method (BEM) leads to dense linear systemswhose size growsrapidly in pratice ;...
Jury: L.Greengard (Courant Institut, NYU), P.Joly (Inria, Rocquencourt), B.Desprès (UPMC), P.Frey (U...