Geo-distributed computing environments such as hybrid cloud, multi-cloud and Fog Computing need to be managed autonomously at large scales to improve resource utilization, maximize performance, and save costs. However, resource management in these geo-distributed computing environments is difficult due to wide geographical distributions, poor network conditions, heterogeneity of resources, and limited capacity. In this thesis, we address some of the resource management challenges using container technology. First, we present an experimental analysis of autoscaling in Kubernetes clusters at the container and Virtual Machine levels. Second, we propose a proportional controller to dynamically improve the stability of geo-distributed deployment...