Fixed-point iterative procedures for solving nonlinear parameter dependent problems can converge for some interval of parameter values and diverge as the parameter changes. The Recursive Projection Method (RPM), which stabilizes such procedures by computing a projection onto the unstable subspace is presented. On this subspace a Newton or special Newton iteration is performed, and the fixed-point iteration is used on the complement. As continuation in the parameter proceeds, the projection is efficiently updated, possibly increasing or decreasing the dimension of the unstable subspace. The method is extremely effective when the dimension of the unstable subspace is small compared to the dimension of the system. Convergence proofs are given ...