Missing data often comes up in practical applications and may cause many problems. The impact of missing data on modeling and statistical inferences is eminently important, especially in the face of subjects with missing data who have response patterns that differ greatly from those with complete data. Inadequate treatment or non-treatment of missing data may also affect the overall results of the analysis. There are several approaches of addressing the missing information problem. In this work,methodologies for missing data treatment in predictive models through an application of the problem are discussed. For this, the logistic regression technique is used to develop a predictive tool for the risk of hemorrhagic transformation in patients...
The problem of missing data has existed since the beginning of data analysis, as missing values are ...
Many studies are affected by missing data, which takes different forms and complicates sub-sequent a...
Neste trabalho apresentamos um estudo detalhado do modelo de regressão logística na presença de valo...
Modelos preditivos têm sido cada vez mais utilizados pelo mercado a fim de auxiliarem as empresas na...
O desenvolvimento de métodos para o tratamento de omissões nos dados é recente na estatística e tem ...
Os dados faltantes são observações que deveriam ter sido feitas, mas não foram por algum motivo, red...
International audienceLogistic regression is a common classification method in supervised learning. ...
Fox et al. (1998) carried out a logistic regression analysis with discrete covariates in which one o...
In clinical settings, missing data in the covariates occur frequently. For example, some markers are...
Copyright © 2017 John Wiley & Sons, Ltd. Nonresponses and missing data are common in observational s...
Hoje o Big Data já faz parte do cotidiano das pessoas e está em itens como: assistentes virtuais, Si...
In many situations where a statistician deals with missing data prior information is needed in order...
It is well accepted that many real-life datasets are full of missing data. In this paper we introduc...
In some situations, in various areas of knowledge, the response variable of interest has dichotomous...
Abstract. It is well accepted that many real-life datasets are full of missing data. In this paper w...
The problem of missing data has existed since the beginning of data analysis, as missing values are ...
Many studies are affected by missing data, which takes different forms and complicates sub-sequent a...
Neste trabalho apresentamos um estudo detalhado do modelo de regressão logística na presença de valo...
Modelos preditivos têm sido cada vez mais utilizados pelo mercado a fim de auxiliarem as empresas na...
O desenvolvimento de métodos para o tratamento de omissões nos dados é recente na estatística e tem ...
Os dados faltantes são observações que deveriam ter sido feitas, mas não foram por algum motivo, red...
International audienceLogistic regression is a common classification method in supervised learning. ...
Fox et al. (1998) carried out a logistic regression analysis with discrete covariates in which one o...
In clinical settings, missing data in the covariates occur frequently. For example, some markers are...
Copyright © 2017 John Wiley & Sons, Ltd. Nonresponses and missing data are common in observational s...
Hoje o Big Data já faz parte do cotidiano das pessoas e está em itens como: assistentes virtuais, Si...
In many situations where a statistician deals with missing data prior information is needed in order...
It is well accepted that many real-life datasets are full of missing data. In this paper we introduc...
In some situations, in various areas of knowledge, the response variable of interest has dichotomous...
Abstract. It is well accepted that many real-life datasets are full of missing data. In this paper w...
The problem of missing data has existed since the beginning of data analysis, as missing values are ...
Many studies are affected by missing data, which takes different forms and complicates sub-sequent a...
Neste trabalho apresentamos um estudo detalhado do modelo de regressão logística na presença de valo...