This work aims to present the concept of surfaces in Euclidean space and to present examples, starting from simpler cases as two-dimensional surfaces in R3, to general cases of m-dimensional surfaces in Rn. It is an introduction to the differential geometry of surfaces and of fundamental importance in the study of differentiable manifolds. The purpose is to prepare the reader for a connection with Riemannian geometry, an indispensable subject for masters and doctoral students in Mathematics. For a satisfactory understanding of this work it is necessary to be familiar with concepts of multivariable calculus and basic concepts of linear algebra. In addition, the present study presents the notion of orientable surface and non-orientable surfa...
A twisted surface is constructed by performing on a planar curve, the profile curve, two simultaneou...
Neste trabalho estudamos superfícies em variedades Riemannianas homogêneas tridimensionais com condi...
Quando a=1/2 e R>0, temos uma faixa de Möebius (a famosa superfície não orientável). Ao ajustar os p...
Um dos problemas interessantes na área de Geometria Diferencial de subvariedades é a análise, caract...
Educação Superior::Ciências Exatas e da Terra::MatemáticaWhen a=1/2 and R>0, the surface shown is a ...
This paper deals with the surfaces of constant mean curvature in the Euclidean space. The first par...
O objetivo central deste trabalho é estudar a geometria extrínseca de superfícies em R4. Um dos aspe...
In this work we investigate the differential geometry of singular surfaces known as frontals. We pro...
The aim of this thesis is to create an overview of special surfaces and to define their characterist...
We divide this work into two chapters. In Chapter 1, we give the preliminaries about surfaces in R3 ...
Curvature is fundamental to the study of differential geometry. It describes different geometrical a...
This book is a posthumous publication of a classic by Prof. Shoshichi Kobayashi, who taught at U.C. ...
W pracy została przedstawiona definicja powierzchni prostokreślnej oraz powierzchni rozwijalnej. Do ...
A logical continuation of our previous study of twisted surfaces (see [2] and the references therein...
Neste trabalho estudamos superfícies mínimas conjugadas de uma superfície mínima e as propriedades g...
A twisted surface is constructed by performing on a planar curve, the profile curve, two simultaneou...
Neste trabalho estudamos superfícies em variedades Riemannianas homogêneas tridimensionais com condi...
Quando a=1/2 e R>0, temos uma faixa de Möebius (a famosa superfície não orientável). Ao ajustar os p...
Um dos problemas interessantes na área de Geometria Diferencial de subvariedades é a análise, caract...
Educação Superior::Ciências Exatas e da Terra::MatemáticaWhen a=1/2 and R>0, the surface shown is a ...
This paper deals with the surfaces of constant mean curvature in the Euclidean space. The first par...
O objetivo central deste trabalho é estudar a geometria extrínseca de superfícies em R4. Um dos aspe...
In this work we investigate the differential geometry of singular surfaces known as frontals. We pro...
The aim of this thesis is to create an overview of special surfaces and to define their characterist...
We divide this work into two chapters. In Chapter 1, we give the preliminaries about surfaces in R3 ...
Curvature is fundamental to the study of differential geometry. It describes different geometrical a...
This book is a posthumous publication of a classic by Prof. Shoshichi Kobayashi, who taught at U.C. ...
W pracy została przedstawiona definicja powierzchni prostokreślnej oraz powierzchni rozwijalnej. Do ...
A logical continuation of our previous study of twisted surfaces (see [2] and the references therein...
Neste trabalho estudamos superfícies mínimas conjugadas de uma superfície mínima e as propriedades g...
A twisted surface is constructed by performing on a planar curve, the profile curve, two simultaneou...
Neste trabalho estudamos superfícies em variedades Riemannianas homogêneas tridimensionais com condi...
Quando a=1/2 e R>0, temos uma faixa de Möebius (a famosa superfície não orientável). Ao ajustar os p...