This paper aims to show the solution given by Max Dehn to the third Hilbert’s problem, which is the following question “there are two fi gures in space that are not equivalent by dissection and have the same volume?”. The work is divided into three chapters: in the fi rst presents a brief introduction on units of measure both lengths and areas. A function is constructed which measures the part of the plane occupied by afigure, it is called area function. The second chapter is devoted to the study of poly-gons that are equivalent by dissection, i.e., polygons that may be constructed splitting one of then in smaller parts that do not overlap and, when placed together in another position, form the other polygon. It also a proof of the Bolyai-Gerw...
AbstractIt is shown that in a Hilbert space the only infinite equidistant systems of points are thos...
Le 18e problème de Hilbert est constitué de trois questions vaguement liées : Le nombre de groupes a...
Dans la première partie, nous démontrons une partie d'une conjecture de J.-L. Duret. Soit k un corps...
We show in this work the Wallace-Bolyai-Gerwien theorem and Hilbert’s third problem. We use the firs...
Title: Volume of Pyramid Author: Bc. Milan Vaňkát Department: Department of Mathematics Education Su...
O objetivo principal deste trabalho é provar o Teorema de Dehn. Esse teorema é resposta ao Terceiro ...
The main object of this work is study some elementary comcepts in Euclidean geometry. After studying...
This paper analyzes the theory of area developed by Euclid in the Elements and its modern reinterpre...
decompose one of them into a finite number of polygons that can be rearranged to form the second pol...
Hilbert’s Third problem questioned whether, given two polyhedrons with the same volume, it is possi...
El artículo desarrolla una interpretación de las contribuciones de David Hilbert, en su influyente m...
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 20...
This paper provides a detailed study of David Hilbert’s axiomatization of the theory of plane area, ...
The paper continues the consideration of Hilbert mathematics to mathematics itself as an additional ...
Heilbronn conjectured that given arbitrary n points form R"2, located in the unit square (or ci...
AbstractIt is shown that in a Hilbert space the only infinite equidistant systems of points are thos...
Le 18e problème de Hilbert est constitué de trois questions vaguement liées : Le nombre de groupes a...
Dans la première partie, nous démontrons une partie d'une conjecture de J.-L. Duret. Soit k un corps...
We show in this work the Wallace-Bolyai-Gerwien theorem and Hilbert’s third problem. We use the firs...
Title: Volume of Pyramid Author: Bc. Milan Vaňkát Department: Department of Mathematics Education Su...
O objetivo principal deste trabalho é provar o Teorema de Dehn. Esse teorema é resposta ao Terceiro ...
The main object of this work is study some elementary comcepts in Euclidean geometry. After studying...
This paper analyzes the theory of area developed by Euclid in the Elements and its modern reinterpre...
decompose one of them into a finite number of polygons that can be rearranged to form the second pol...
Hilbert’s Third problem questioned whether, given two polyhedrons with the same volume, it is possi...
El artículo desarrolla una interpretación de las contribuciones de David Hilbert, en su influyente m...
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 20...
This paper provides a detailed study of David Hilbert’s axiomatization of the theory of plane area, ...
The paper continues the consideration of Hilbert mathematics to mathematics itself as an additional ...
Heilbronn conjectured that given arbitrary n points form R"2, located in the unit square (or ci...
AbstractIt is shown that in a Hilbert space the only infinite equidistant systems of points are thos...
Le 18e problème de Hilbert est constitué de trois questions vaguement liées : Le nombre de groupes a...
Dans la première partie, nous démontrons une partie d'une conjecture de J.-L. Duret. Soit k un corps...