Neste trabalho estudamos algumas características das álgebras de Koszul, como por exemplo, a maneira como elas se relacionam com suas respectivas álgebras de Yoneda. Descrevemos a álgebra de Yoneda de uma álgebra monomial e como aplicação construímos uma família de álgebras: as chamadas homologicamente auto-duais. Uma álgebra de Koszul pode ser definida a partir da existência de resoluções lineares dos módulos simples. Por isso faz-se necessário a dedicação de parte de nossa atenção ao estudo destas resoluções. Além disso, achamos interessante estudar métodos para a construção de resoluções projetivas de módulos sobre quocientes de álgebras de caminhos. Para tal construção usamos essencialmente a teoria de bases de Gröbner não comutativas. ...