Em 1991, Kishor Shah definiu e estudou os ideais coeficientes \'I IND. {k}\' , para todo inteiro k = 0, . . . , d, associados a um ideal m-primário I de um anel Noetheriano local d-dimensional, (R,m). Esses ideais, \'I IND. {k} \' , são os maiores ideais de R que contem o ideal I tais que os primeiros k + 1 coeficientes dos polinômios de Hilbert-Samuel de I e \'I IND. {k} \' coincidem. O resultado principal do trabalho de Kishor Shah é provar teoremas de estrutura para estes ideais. Na sua Tese de Doutorado, Jung-Chen Liu generalizou alguns aspectos do trabalho de Kishor Shah para R-submódulos E de \'R POT. p\', definindo os submódulos coeficientes \'E IND. {k}\' , para k = 0, . . . , d + p 1. Por´em Jung-Chen Liu não provou o teorema de ...