Atualmente, diversas áreas de aplicação necessitam de mecanismos mais efetivos para analisar dados provenientes de naturezas distintas. Tipicamente, esses dados são abstratos, não estruturados e possuem uma natureza multidimensional (e.g., coleções de documentos). Dados que não possuem uma natureza multidimensional podem ser representados como tal por meio da aplicação de algoritmos extratores de características (e.g., coleções de imagens). Assim, técnicas de visualização de informação projetadas para interpretar dados multidimensionais podem ser aproveitadas para analisar dados não estruturados. Esta tese empregou técnicas de visualização de informação para construir mapas de similaridade a partir de dados multidimensionais como uma forma ...