A gonalidade de uma curva C é o menor inteiro d para o qual existe um sistema linear de grau d e dimensão 1 em C, possivelmente admitindo pontos de base não removíveis. Mostramos que a gonalidade de uma curva não-Gorenstein de gênero aritmético g varia entre 2 e g e que a gonalidade máxima possível de uma curva racional não-Gorenstein com um único ponto singular coincide com a cota de Brill-Noether para curvas regulares. Além disso, provamos alguns resultados adicionais sobre a gonalidade de curvas de gênero arbitrário. Em seguida, fizemos uma análise detalhada de todas as gonalidades possíveis de curvasnão-Gorenstein de gênero 5, de acordo com os seus respectivos modelos canônicos. Na última parte, obtivemos nosso resultado principal: a ge...