Accounting for spatial image transformations is a requirement for multimedia problems such as video classification and retrieval, face/object recognition or the creation of image mosaics from video sequences. We analyze a transformation invariant metric recently proposed in the machine learning literature to measure the distance between image manifolds - the tangent distance (TD) - and show that it is closely related to alignment techniques from the motion analysis literature. Exposing these relationships results in benefits for the two domains. On one hand, it allows leveraging on the knowledge acquired in the alignment literature to build better classifiers. On the other, it provides a new interpretation of alignment techniques as one com...
Despite the promise of low-dimensional manifold models for image processing, computer vision, and ma...
International audienceIn this paper, we are interested in comparing human trajectories using skeleto...
For the discovery of similar patterns in 1D time-series, it is very typical to perform a normalizati...
The ability to rely on similarity metrics invariant to image transformations is an important issue f...
The ability to rely on similarity metrics invariant to image transforma-tions is an important issue ...
The computation of the geometric transformation between a reference and a target image, known as ima...
A common problem in image analysis is the transformation-invariant estimation of the similarity betw...
The symmetric positive definite (SPD) matrices, forming a Riemannian manifold, are commonly used as ...
Image tangent space is actually high-level semantic space learned from low-level feature space by mo...
In this paper, we address the problem of classifying image sets for face recognition, where each set...
Abstract We present a new Euclidean distance for images, which we call IMage Euclidean Distance (IME...
In this paper we present a new probabilistic interpretation of tangent distance, which proved to be ...
<p>Each dot represents a video segment. Distance between dots is computed by the alignment algorithm...
Similarity measurements between 3D objects and 2D images are useful for the tasks of object recognit...
In this paper, we propose a new multi-manifold metric learning (MMML) method for the task of face r...
Despite the promise of low-dimensional manifold models for image processing, computer vision, and ma...
International audienceIn this paper, we are interested in comparing human trajectories using skeleto...
For the discovery of similar patterns in 1D time-series, it is very typical to perform a normalizati...
The ability to rely on similarity metrics invariant to image transformations is an important issue f...
The ability to rely on similarity metrics invariant to image transforma-tions is an important issue ...
The computation of the geometric transformation between a reference and a target image, known as ima...
A common problem in image analysis is the transformation-invariant estimation of the similarity betw...
The symmetric positive definite (SPD) matrices, forming a Riemannian manifold, are commonly used as ...
Image tangent space is actually high-level semantic space learned from low-level feature space by mo...
In this paper, we address the problem of classifying image sets for face recognition, where each set...
Abstract We present a new Euclidean distance for images, which we call IMage Euclidean Distance (IME...
In this paper we present a new probabilistic interpretation of tangent distance, which proved to be ...
<p>Each dot represents a video segment. Distance between dots is computed by the alignment algorithm...
Similarity measurements between 3D objects and 2D images are useful for the tasks of object recognit...
In this paper, we propose a new multi-manifold metric learning (MMML) method for the task of face r...
Despite the promise of low-dimensional manifold models for image processing, computer vision, and ma...
International audienceIn this paper, we are interested in comparing human trajectories using skeleto...
For the discovery of similar patterns in 1D time-series, it is very typical to perform a normalizati...