In this article we prove the existence, uniqueness, and simplicity of a negative eigenvalue for a class of integral operators whose kernel is of the form $|x-y|^\rho$, $0 < \rho \leq 1$, $x, y \in [-a, a]$. We also provide two different ways of producing recursive formulas for the Rayleigh functions (i.e., recursion formulas for power sums) of the eigenvalues of this integral operator when $\rho=1$, providing means of approximating this negative eigenvalue. These methods offer recursive procedures for dealing with the eigenvalues of a one-dimensional Laplacian with non-local boundary conditions which commutes with an integral operator having a harmonic kernel. The problem eme...
[EN] This work is devoted to solve integral equations formulated in terms of the kernel functions an...
The paper is devoted to the equiconvergence of the trigonometric Fourier series and the expansions i...
We investigated a eigenvalue problem for simple second order ordinary differential equation with one...
© 2016 Elsevier Inc. In this article we prove the existence, uniqueness, and simplicity of a negativ...
© 2016 Elsevier Inc. In this article we prove the existence, uniqueness, and simplicity of a negativ...
We consider the reduced spectral problem for the Cauchy–Riemann operator with nonlocal boundary cond...
The article investigates the eigenvalue problem for ordinary onedimensional differential operator wi...
International audienceIn this paper we are interested in the existence of a principal eigenfunction ...
AbstractLet K be an eventually compact linear integral operator on Lp(Ω, μ), 1 ⩽ p < ∞, with nonnega...
We study the spectrum of one dimensional integral operators in bounded real intervals of length 2L, ...
We study the spectrum of one dimensional integral operators in bounded real intervals of length 2L, ...
We study the spectrum of one dimensional integral operators in bounded real intervals of length 2L, ...
We study the spectrum of one dimensional integral operators in bounded real intervals of length 2L, ...
We study the spectrum of one dimensional integral operators in bounded real intervals of length 2L, ...
In this paper the eigenvalue problem for one-dimensional differential operator with nonlocal integra...
[EN] This work is devoted to solve integral equations formulated in terms of the kernel functions an...
The paper is devoted to the equiconvergence of the trigonometric Fourier series and the expansions i...
We investigated a eigenvalue problem for simple second order ordinary differential equation with one...
© 2016 Elsevier Inc. In this article we prove the existence, uniqueness, and simplicity of a negativ...
© 2016 Elsevier Inc. In this article we prove the existence, uniqueness, and simplicity of a negativ...
We consider the reduced spectral problem for the Cauchy–Riemann operator with nonlocal boundary cond...
The article investigates the eigenvalue problem for ordinary onedimensional differential operator wi...
International audienceIn this paper we are interested in the existence of a principal eigenfunction ...
AbstractLet K be an eventually compact linear integral operator on Lp(Ω, μ), 1 ⩽ p < ∞, with nonnega...
We study the spectrum of one dimensional integral operators in bounded real intervals of length 2L, ...
We study the spectrum of one dimensional integral operators in bounded real intervals of length 2L, ...
We study the spectrum of one dimensional integral operators in bounded real intervals of length 2L, ...
We study the spectrum of one dimensional integral operators in bounded real intervals of length 2L, ...
We study the spectrum of one dimensional integral operators in bounded real intervals of length 2L, ...
In this paper the eigenvalue problem for one-dimensional differential operator with nonlocal integra...
[EN] This work is devoted to solve integral equations formulated in terms of the kernel functions an...
The paper is devoted to the equiconvergence of the trigonometric Fourier series and the expansions i...
We investigated a eigenvalue problem for simple second order ordinary differential equation with one...