This work focuses on determining the fundamental chemistry of molecules at interfaces important to catalysis and atmospheric chemistry using electron-detection based techniques. Instruments were either retrofitted, or designed and constructed to facilitate the study of interfaces in ultrahigh vacuum (UHV) or in near-ambient pressures. Chapters two and five overview theory and instrumental development for high resolution electron energy loss spectroscopy (HREELS) and liquid-microjet X-ray photoelectron spectroscopy (LJ-PES), respectively.Chapters three and four cover vibrational spectroscopic studies completed at UC Irvine. The dehydrogenation of cyclohexane over alumina-supported platinum nanoparticles was found to differ from that over ...