We investigate the problem of algorithmically drawing graphs, i.e., the process of creating geometric representations of graphs. We primarily consider node-link diagrams, where the vertices of a graph are represented with dots and the edges of a graph are represented as piece-wise smooth curves connecting those dots corresponding to their end points. Our contributions include hardness results going beyond $\NP$-hardness and fixed-parameter tractable algorithms for $\NP$-hard problems.Orthogonal drawing is a common graph drawing style in which the edges of a graph are drawn as polygonal chains of axis-aligned segments. We show that several problems of compacting orthogonal graph drawings to use the minimum number of rows, area, length of lon...