Polygons in Buildings and their Refined Side Lengths

  • Kapovich, Michael
  • Leeb, Bernhard
  • Millson, John J.
Publication date
December 2009
Publisher
eScholarship, University of California

Abstract

As in a symmetric space of noncompact type, one can associate to an oriented geodesic segment in a Euclidean building a vector valued length in the Euclidean Weyl chamber Δeuc. In addition to the metric length it contains information on the direction of the segment. In this paper we study restrictions on the Δeuc-valued side lengths of polygons in Euclidean buildings. The main result is that for thick Euclidean buildings X the set $${\mathcal{P}n(X)}$$ of possible Δeuc-valued side lengths of oriented n-gons depends only on the associated spherical Coxeter complex. We show moreover that it coincides with the space of Δeuc-valued weights of semistable weighted configurations on the Tits boundary ∂Tits X. The side lengths of po...

Extracted data

We use cookies to provide a better user experience.