Extremal combinatorics can be described as a subfield of combinatorics that studies the maximum or minimum size of discrete structures (such as graphs, set systems, or convex bodies) with certain properties. For example, a classical question of this kind is, ``what is the maximum number of edges that a triangle-free graph can have?''. One particular beauty of extremal combinatorics lies in its connection to other fields of mathematics. That is, many questions in this area has applications in analysis, number theory, probability, and theoretical computer science. On the other hand, numerous problems which seem to be purely combinatorial can only be proved by relying on tools from algebra, analysis, topology, probability, and other areas. The...