Recent MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) measurements have shown that Mercury's magnetic field is axial-dominant, yet strongly asymmetric with respect to the equator: the field strength in the Northern Hemisphere is approximately 3 times stronger than that in the Southern Hemisphere. Here we show that convective dynamo models driven by volumetric buoyancy with north-south symmetric thermal boundaries are capable of generating quasi-steady north-south asymmetric magnetic fields similar to Mercury's. This symmetry breaking is promoted and stabilized when the core-mantle boundary heat flux is higher at the equator than at high latitudes. The equatorially asymmetric magnetic field generation in our dynamo...