Compacted bentonite is commonly considered for use as backfill material in emplacement tunnels of nuclear waste repositories because of its low permeability, high swelling pressure, and retardation capacity of radionuclide. To assess whether this material can maintain its favorable features when undergoing heating from the waste package and hydration from the host rock, we need a thorough understanding of the thermal, hydrological, mechanical, and chemical evolution under disposal conditions. Laboratory and field tests integrated with THMC modeling have provided an effective way to deepen such understanding; however, most of this work has been conducted for maximum temperatures around 100°C. In contrast, some international disposal programs...