Dynamic fracture behavior in both fairly continuous materials and discontinuous cellular materials is analyzed using a hybrid particle model. It is illustrated that the model remarkably well captures the fracture behavior observed in experiments on fast growing cracks reported elsewhere. The material's microstructure is described through the configuration and connectivity of the particles and the model's sensitivity to a perturbation of the particle configuration is judged. In models describing a fairly homogeneous continuous material, the microstructure is represented by particles ordered in rectangular grids, while for models describing a discontinuous cellular material, the microstructure is represented by particles ordered in honeycomb ...